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Dyadotropic Polynomials 

By Harvey Cohn* 

Abstract. Polynomials which tend to represent powers of two arise in connection with 

certain problems of class field theory of dihedral biquadratic fields. The availability of 

independent units is an immediate consequence for an infinitude of parametrized cases. 

An exhaustive search for such types of polynomials is made by use of computer. 

1. Introduction. The title refers to polynomials which have an "inclination" 

toward powers of two. For example, the most startling case is perhaps 

(1.1) f(x) x4 + x3 - 6x2 + 2x + 4 

f(-3)=-2, f(-2)=-16, f(-1)=-4, f(O)=4, f(l)=2, 
(1.2) 

f(2) = 8, f(3) = 64. 

To be more formal, we define a monic integral polynomial of degree N as 

dyadotropic when N + 1 consecutive absolute values are powers of two (higher than 

the zero power). 
From a combinatorial point of view, we can in principle assign N + 1 consecutive 

S. T- 
values as (- 1) 12 = f(;) merely by taking the precautions of "finite differencing". 

Thus, we need only have the Nth difference equal to N! and the lower order differences 

divisible by the corresponding factorial. 

We are concerned, however, with polynomials of special relevancy to algebraic 

number theory. Thus, the example (1.1) is a defining polynomial for k4 = 

Q(411/2, e1/2), for e = 32 + 5 - 411/2, a fundamental unit for k2 = Q(41112). This 

is important as a subfield of the absolute class field of Q((- 41)1/2), (see [11, [21, 

[91 ). The fact that all these powers of two occur merely guarantees the ready avail- 

ability of independent units. This phenomenon is generalized in a systematic manner 

which we shall describe, and it leads to a parametrized infinitude of cases. 

2. Relative-Quadratic Polynomials. We focus our attention on the cases where 

the degree N = 4 and f(x) is the norm of a polynomial g(x) over a quadratic field as 

follows: 

(2.1) k = Q(do'2), do 1 (mod 8), do square-free # 1, 

(2.2) g(x) X2 +ax +e, 
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1/2 ~~T012 (2.3) at = (a + bdo2)/2, !elI= , (To > 0), a-b-1 (mod 2), 

(2.4) f (x) = N2119(X), 

(2.5) f(x) = x4 + ax3 + (2e + (a2 - b2do)/4)x2 + aex + e2. 

The dyadotropic property is achieved if the four surds 

(2.6a) g(+2)/2 = (2 + e/2 ? (a + bd'I2)/2)= 

(2.6b) g(?1) = (1 + e ?(a + bdol2)/2) = 

all have norm equal to a power of two. Then 

(2.7) f(?2)= 4N2 1 fy2, f(?l)=N2 1fy1, f(0) = e 2 

(The illustration (1.1) is given by a = (1 + 411/2)/2, e = 2, and it appears in Tables I 
and II as [2; 1, 0].) 

If we let t denote a root of f(x) = 0, then it determines 

(2.8) k = Q(Q) = Q(dc42, 
1 

1/2) = Q(112) 

(2.9) =a2 - 4e. 

Finally, with m integral, we have the norm relation 

(2.10) f(m) = N4/1(m - t) = N2/1g(m). 

We refer to such dyadotropic polynomials f(x) as normed relative-quadratic, and we use 
the symbol f(x) exclusively for such polynomials from now on. For convenient 
reference to Galois group operations on k4 (or on t and its conjugates), we fix the nota- 
tion as follows: 

(2.1la) = (-a ? + 12)/2 I = (-a ' ? 11/2)/2 

(2.1 lb) St= (- -g12)/2, St' = (-a' g "2)/2 

where the prime denotes conjugation in k2. Thus, with d = b2d 

(2.12) a =(a +d12)/2, a' =(a-d2)/2 

(2.13) g=a2 -4e, I 
=a'2 -4e. 

Of course, S leaves k2 invariant elementwise, so e = Se for e the fundamental unit of 

k2. It is easy to verify that 

(2.14) N4 = = 'S' = e, 

(2.15) f (e/x) =f (x)e 2/x 4. 

Furthermore, f(1) - f (- 1) = 2a(1 + e) 2 (mod 4). Thus, If (1) I or If(- 1) I (one 
choice) = 2. We can, therefore, normalize all polynomials f(x) (against the trivial 
symmetry x ) - x, a ( - a) by assuming, henceforth, 
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(2.16) f(l) =N211yl = ? 2 (T1 = 1). 

It is now clear how f(x) might be computed for some given ring-discriminant d, 
satisfying 

(2.17) d = b2do 1 (mod 8). 

We search for pairs of powers 2t (> 8) and odd z (> 0) satisfying 

(2.18) z2-d=?2t. 

For any d we construct a file (z, ?2t). For instance, the longest file arose for d = 17 
(within the limits of our computation): 

(z, ?2t) = (5, 8), (3, -8), (1,-16), (7, 32), (9, 64), (23, 512). 

Then we ask for quadruples (zi + d1' 2)/2, (i = 1, . . . , 4), which satisfy the descrip- 

tions of Z? 2' 1 in (2.6a, b). (We "anchor" the procedure by trying each ?zi in 
turn for -'_2 while e successively takes the values 2, -2, 4, -4,....) As expected, 
the largest number of polynomials (eight) arose from the file for d = 17. 

By virtue of (2.16), we must satisfy (2.18) for 2t = 8 at least once in each file. 
Thus d = Z2 ? 8. This implies that 

(2.19) d > - 7. 

Because of this, the computer survey is made to construct the file (z, ? 2t) by taking 
values of d 1 (mod 8) (excluding perfect squares) within the limit -7 < d < 75001, 
with values of 2t < 1020. The output contained d, a, "f (x)" (i.e., its coefficients and 
values for -3 < x < 3, see (6.4) below). The IBM 360-50 at tho City College of 
New York was used. The total running time was about ten minutes. 

3. Thoroughness of Enumeration. The computation was performed as described, 
with output printed according to increasing d. It was clear that some "regularity" 
occurred for e = + 2. This led to the conjecture that all such cases may be accounted 
for parametrically, indeed by the formulas presented in Table I. (This is proved in 
Theorem 3.5 below.) The further conjecture seemed warranted from the size of the 
search that the cases where I e I > 2 are finite in number and are only those listed in 
Table I. Thus, there would be none for I e I > 4. This would be difficult to believe 
"firmly" in the absence of a computer survey because of the occasional "freakish" 
solutions to (2.18). (Incidentally,' the solutions to (2.18) are of traditional diophantine 
interest largely for negative d, see [5], while the fields where d has the form z2 - 8 
are of appeal for reasons of class number, see [8].) 

LEMMA 3.1. The polynomials f (x) satisfy 

(3.2) e = 2: f(-2) = 4f(- 1), f(2) =4f(1), f(0) = 4, 

(3.3) e =-2: f(-2) = 4f(1), f(2) -4f(- 1), f(0) = 4, 

(3.4) e = - 4: f(-2) = ff2), f(0) = 16. 

These statements follow from (2.15). 
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THEOREM 3.5. When e = ? 2, the only dyadotropic normed relative-quadratic 
polynomials are given (as in Table I) by 

(3.6a) e = 2: a = (1)v(2u - (-1)u)/3, d = (a + 6)2 + (-1)u +v8, 

(3.6b) e = - 2: a =-(- 1I)w(2u + (- IflU, d =(a - 2)2 - (- 1I)v+ w8. 

When e = - 4, there are only the five cases listed in Table I. (Conjecturally, the only 
remaining case is shown for e = 4.) 

For proof, note that when e = 2, there is only one degree of freedom left from 
(2.16) and (3.2) namely inf(-1), which we write as -(-l)v2u+1. Then by solving 
both of N211 y+ 1 =f (? 1) simultaneously we obtain a and d. The same holds for e = 

-2, except for a further choice of sign. 
The cases where I e I > 4 are handled by finite-difference conditions on f(m) = 

(-1) m2 m, -2 < m < 3. For example, the fact that the fourth difference is 24 
leads to 

6e2 - 24 = 4(- 1) S-12T-1 + 4(- 1)S12T1 

(3.7) 

-(-I1) -22 -2 - (-01o2 2 

Furthermore, the condition on the third difference is 

(3.8) (-1)S22T+2 (- 1)S+F12T+ (mod 3) 

with either choice of sign. While these conditions make a polynomial dyadotropic, 
they do not make it normed relative-quadratic. The additional necessary condition 
(2.16), that T1 = 1, would make (3.7) into a simpler problem of decomposing 
6e2 - 24 ? 8 as the sum or difference of three powers of two. With I e I > 4, we 
would be down to a small number of choices coming from the following two decompo- 
sitions in some permutation: 

(3.9a) 6e2- 16 = 4e2 + 2e2 - 16 = 8e2 - 2e2 - 16, 

(3.9b) 6e2- 32 = 4e2 + 2e2 - 32 = 8e2 - 2e2 - 32 

but when I e I = 4, 6e2 - 32 = 64 has infinitely many such partitions. Nevertheless, 
when e = -4, (3.4) serves to limit (3.9a, b) to only a finite number of cases (see 
Table I). The remaining cases lead to equations of type (2.18) which seem unlikely 
to be valid "often enough". Yet, incredible exceptions such as e = 4 (Table I) are not 
completely ruled out at present. 

4. Biquadratic Ramifications and Units. It is clear (see [7]) that since do 
d 1 (mod 8), then the ideal 2 factors in k2 as 

(4.1) 2 = 2122 (21 #22). 

We normalize the choice by taking 21 = (iy) and 22 = (y'4), where 

(4.2) y (1 +e) + (a + d112)/2. 

Also, 21 1y1, but it is 22 which divides a = (a + d112)/2 and , (= a2 - 4e). Hence, 
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T- 
N412 Q + 1) = 7- 1 = 21- 

(4.3) N4/2Q) = e = (2122)To12 

N4/2( - 1 ) =y1 = 21. 

When we go to k4, it is clear that 21 must split 

(4.4) 21 = 211212 (211 $212). 

(For instance, if we set 211 = Q - 1), then 21l cannot divide t.) 
LEMMA 4.5. The ideal 22 must ramify in k4/k2 when e = +2. 
For proof, note that in (4.3) with To = 2, only one factor 221 of 22 divides t 

while no other factor can divide t ? 1. 
When I e I > 2, the factor 22 may or may not ramify. Thus, for all cases, we 

have 

(4.6a) ( + 1)= 2T-1 (Q -1) = 211, 

2 TO/22To/2 (2 = 2 1 ramified), 

(4.6b) (Q) T=4T/ 
(221222) ? 212 (22 = 221222 unramified). 

The conditions for ramification of 22 are that either ,u contain a nonremovable 
even factor (i.e., 29 lI,u where g is odd), or that if go = ,u/29 is odd (for g even) then 
(see [7]), 

(4.7) go 1 (mod 4). 

(Since d 1 mod 8, the only odd square in k2 is 1 mod 4.) Thus, we test the 
cases where e = +4 and find only the following are unramified over 2: 

(4.8) [-4; A], [-4; C], [-4; D], [-4; E]. 

In all other cases in Table 1, 22 ramifies. In some cases, remarkably, it is the 

only ramified prime for k4/k2 (see [4] ). For instance, for [2; 1, 01, N211 disc k4/k2 
= 4. For the case e = 4 and the cases [2; 2, 1], [2; 1, 1], [2; 3, 0], [-2; 4, 0, 01, 

N2/1 disc k4/k2 = 8. Further anomalies occur. For instance, for [-2; 4, 0, 0] ,u has 
a removable odd square 192 (where 19 = 191192 in k2). Our interest, however, is 

primarily in the units. 

As a consequence of (4.6b), (Q - 1)T_l/( + 1) is the unit ideal. Also, in either 

case of (4.6b), ( )2 _ 2To/22To so2( I)To 1= 2T?I22 Tl2. Thus, whether or not 
2 12' SO - - 102T/ Table I is complete (as conjectured in Theorem 3.5), the following result is implied by 

the formula (4.2) for 21: 
THEOREM 4.9. The field k4 has the units 21, 22 defined as 

(4.10) Q1 = - 1)T_1/(t + 1), If(- 1)1 = 2T1, 
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(4.11) 2 - t - j)To/(2)Ty/l e2 =2 g = (2, To/2), 

and yl = (1 + e) + (a + d1/2)/2. 

5. Independence of Units. The field k4 has r independent (torsion-free) units, 
where r (the so-called Dirichlet rank, see [7]) depends on the four roots of f(x) = 0 
(see (2.1 la, b)) as follows: 

r= 1 when no roots are real, 
r = 2 when just two roots are real, 
r = 3 when all roots are real. 

We should hope to choose independent units from among &21, Q22 and e. These roots 
are independent, by definition, unless 

(5.1)~ ~~~~~~~E9 E 9g2 690 = +1 ~1 ~2 - 

for some nonzero triple of integers (g0, 91, g2). (Of course, JO is ignored when d = 

-7.) By the conjugation operations in (2.11) and (2.12), SQ41S 42egO - ? 1, so that 
in any case we could eliminate the e and obtain 

(5.2a) ( ) -2/SQ2) + 1, 

(5.2b) wQl /SE2, )gl IQ2S g = 
92 

1. 

If we take logarithms, we see that a "regulator-type" determinant 5 vanishes (when 

(5.1) holds), namely, 

log I21 /SE21 1 log I I22SE22 

(5.3) 6 = log 1EY/S21 I log I QY/SE2 1 

THEOREM 5.4. For the cases in Table I (with a finite number of exceptions), 

the units &21' Q2 and e are an independent system. (Conjecturally, the only excep- 
tions occur in Table II, when the Dirichlet rank r < 3.) 

The proof consists of the verification that for I e I = 2, the value of 5 becomes 

infinite with the order of magnitude u3 (or (log d)3). Details are omitted since this is 

a straightforward calculation based on the asymptotic estimates for the closeness of the 

four roots of f (x) (see (2.1 la, b)) to 0, 1, -1, and oa as u -> oa. 

For Table II, the computer tested the dependence for the cases of Table I where 

e = + 4 and for the cases of e = 2 where u < 6, and those of e = - 2 where u < 4. 

(This range includes all cases where r < 3.) For any nonzero Q2 E k4, the real four- 

vector 

(5.5) (log IQ 1, log ISQ2 1, log I 2' 1, log I SQ' I) 

can be easily computed by double-precision complex arithmetic, particularly when Q2 
is a factored polynomial in t. This was done for Q = E2 and Q2 = -2* =2/g(t - 1)2 

(Here M proves more convenient than &2, whose denominator cancels in forming 
M/SQ.) Whenever 5 = 0 "numerically," we can tell the unit relations by inspection. 

They consist only of cases where r < 3. 
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TABLE II 

r [e, "type"] a d A D e unit=+1 

1 [2; 4, 1] -5 -7 -7 56 ... Q Q 

1 [-2; 1, 1, 1 1 -7 13 44 ... Q Q 

1 [-2; 2, 1, 1] 3 -7 17 88 ... Q21 

1 [-4; A] 5 -7 41 29 .&.. 2 2-2 

1 [2; 2, 1] -1 17 -7 8 4 + 171/2 E22C1; E2 

2 [2;3, 1] | -3 17 -3 36 4+ 171/2 | 1Q'2 |1 

2 [2; 1,1] -1 33 1 8 23 + 4.331/2 Q222- 

2 [2; 5,1] -11 33 61 68 23 + 4 331/2 | 2 Er | 

2 [2;1, 0] 1 41 5 4 32+5 411/2 | 2e- I 

2 [2; 3, 0] 3 73 25 8 1068 + 125 - 731/2 22C1 

Interrelations of units &2, 12 e 

For the field k4 - Q(Q11/2), ,u = (A + adl12)/2, the Dirichlet rank r and the 

quadratic fundamental unit (for k2 - Q(dl12)) are shown (see [6]). Since A is not 

assumed square-free, D = N211 disc k4/k2 is also shown. 

6. Concluding Remarks. Some insight into the different nature of the units &21 

and Q2 is given by the norm operation 

(6.1) N4/2E2i = RSni = Ei (i = 1, 2), 

where e, is a unit in k2. By using relations (2.11)-(2.14) we find I f?2S?2 2 = 1, but 

more remarkably 

(6.2) Q1SQ2 = ? y1 1/zy1 (= e1). 

Units like e1 have been considered by Yamamoto [10], who showed that for 

special infinitudes of cases, e1 is fundamental. Such units satisfy log e (log d)2, so 

these are not "small" units. It is unfortunately not true that for the cases of Table I, 
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c is fundamental (say) for the ring-discriminant d. For example, c = e2 for the case 
[2; 3, 11 right in Table II, as well as other cases where r = 3. Actually, the unit e1 is 
a special case of the more general type 

(6.3) [A + (A2 ? 8)l/21 u+l/ A + 2t + (-1)t(A2 + 8)l/2] 

where A > 0 is odd, (A2 ?8 $ 9), and l(A + 2t)2 -A2 T8 = 2u+l. 

Severa other units were used in numerical experiments. In a few cases If(? 3)1 
(one sign) turned out to be the exact power of 2T?3. This yields a "bonus" unit 

(6.4) Q+ Qt _ 1) 
T 

+/Qt _ 3). 

The highest d for which this occurred was 41 (i.e., [2; 1, 0], the example (1.1)). Only 
in this case do both signs of If(? 3)1 give powers of two. Another type of unit which 
occurred naturally was 

(6.5) 922 = (Q + 2)/(Q - 2) 

for e = -4, (where f(2) = f(-2) by (3.4)). Here, however, there is seen to be a 
further requirement that (Q - 2)14, which excludes the case [-4; E] only. Numerical 
calculations involving the dependence of such further units are excluded for brevity. 

The more challenging problem is to find fundamental units, (i.e., r generators of 
the unit group, ignoring sign). This shall be left to later experimentation. We might, 
nevertheless, remark on the relative scarcity (see [3], [11]) of nonabelian fields for 
which independent units are readily available in parametric form. 
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